Let us denote by \({EX}(m,n; \{C_4,\ldots,C_{2t}\})\) the family of bipartite graphs \(G\) with \(m\) and \(n\) vertices in its classes that contain no cycles of length less than or equal to \(2t\) and have maximum size. In this paper, the following question is proposed: does always such an extremal graph \(G\) contain a \((2t + 2)\)-cycle? The answer is shown to be affirmative for \(t = 2,3\) or whenever \(m\) and \(n\) are large enough in comparison with \(t\). The latter asymptotical result needs two preliminary theorems. First, we prove that the diameter of an extremal bipartite graph is at most \(2t\), and afterwards we show that its girth is equal to \(2t + 2\) when the minimum degree is at least \(2\) and the maximum degree is at least \(t + 1\).
1970-2025 CP (Manitoba, Canada) unless otherwise stated.