In \([4]\) H. Galana-Sanchez introduced the concept of kernels by monochromatic paths which generalize the concept of kernels. In \([6]\) they proved the necessary and sufficient conditions for the existence of kernels by monochromatic paths of the duplication of a subset of vertices of a digraph, where a digraph is without monochromatic directed circuits. In this paper we study independent by monochromatic paths sets and kernels by monochromatic paths of the duplication. We generalize result from \([6]\) for an arbitrary edge coloured digraph.
1970-2025 CP (Manitoba, Canada) unless otherwise stated.