Towards a Characterisation of Lottery Set Overlapping Structures

AP Burger1, JH van Vuuren1, WR Grundlingh2
1Department of Logistics, University of Stellenbosch, Private Bag X1, Matieland, 7602, Republic of South Africa,
2Department of Mathematics and Statistics, University of Victoria, PO Box 3045, STN CSC, Victoria, BC V8W 3P4, Canada,

Abstract

Consider a lottery scheme consisting of randomly selecting a winning \(t\)-set from a universal \(m\)-set, while a player participates in the scheme by purchasing a playing set of any number of \(n\)-sets from the universal set prior to the draw, and is awarded a prize if \(k\) or more elements of the winning \(t\)-set occur in at least one of the player’s \(n\)-sets (\(1 \leq k \leq \{n,t\} \leq m\)). This is called a \(k\)-prize. The player may wish to construct a playing set, called a lottery set, which guarantees the player a \(k\)-prize, no matter which winning \(t\)-set is chosen from the universal set. The cardinality of a smallest lottery set is called the lottery number, denoted by \(L(m,n,t;k)\), and the number of such non-isomorphic sets is called the lottery characterisation number, denoted by \(\eta(m,n,t;k)\). In this paper, an exhaustive search technique is employed to characterise minimal lottery sets of cardinality not exceeding six, within the ranges \(2 \leq k \leq 4\), \(k \leq t \leq 11\), \(k \leq n \leq 12\), and \(\max\{n,t\} \leq m \leq 20\). In the process, \(32\) new lottery numbers are found, and bounds on a further \(31\) lottery numbers are improved. We also provide a theorem that characterises when a minimal lottery set has cardinality two or three. Values for the lottery characterisation number are also derived theoretically for minimal lottery sets of cardinality not exceeding three, as well as a number of growth and decomposition properties for larger lotteries.