On Multicolor Ramsey Numbers for Even Cycles in Graphs

Sun Yongqi1, Yang Yuansheng2, Jiang Baoqi2, Lin Xiaohui2, Shi Lei2
1School of Computer and Information Technology, Beijing Jiaotong University Beijing, 100044, P. R. China
2Department of Computer Science, Dalian University of Technology Dalian, 116024, P. R. China

Abstract

The multicolor Ramsey number \(R_r(H)\) is defined to be the smallest integer \(n = n(r)\) with the property that any \(r\)-coloring of the edges of complete graph \(K_n\) must result in a monochromatic subgraph of \(K_n\) isomorphic to \(H\). In this paper, we study the case that \(H\) is a cycle of length \(2k\). If \(2k \geq r+1\) and \(r\) is a prime power, we show that \(R_r(C_{2k}) > {r^2+2k-r-1}\).