Let \(G\) be a connected graph of order \(n\). Denote \(p_u(G)\) the order of a longest path starting at vertex \(u\) in \(G\). In this paper, we prove that if \(G\) has more than \(t\binom{k}{2} + \binom{p+1}{2} + (n-k-1)\) edges, where \(k \geq 2\), \(n = t(k-1) + p + 1\), \(t \geq 0\) and \(0 \leq p \leq k-1\), then \(p_u(G) > k\) for each vertex \(u\) in \(G\). By this result, we give an alternative proof of a result obtained by P. Wang et al. that if \(G\) is a 2-connected graph on \(n\) vertices and with more than \(t\binom{k-2}{2} + \binom{p}{2} + (2n – 3)\) edges, where \(k \geq 3\), \(n-2 = t(k-2) + p\), \(t \geq 0\) and \(0 \leq p \leq k-2\), then each edge of \(G\) lies on a cycle of order more than \(k\).
1970-2025 CP (Manitoba, Canada) unless otherwise stated.