Let \(M = (E, \mathcal{F})\) be a matroid on a set \(E\), \(B\) one of its bases, and \(M_B\) the base matroid associated to \(B\). In this paper, we determine a characterization of simple binary matroids \(M\) which are not isomorphic to \(M_B\), for every base \(B\) of \(M\). We also extend to matroids some graph notions.
1970-2025 CP (Manitoba, Canada) unless otherwise stated.