Some Structural, Metric and Convex Properties of the Boundary of a Graph

Carmen Hernando1, Mercé Mora2, Ignacio M.Pelayo3, Carlos Seara4
1Departament de Matematica Aplicada I, Universitat Politécnica de Catalunya, Di- agonal 647, 08028 Barcelona, Spain, carmen.
2Departament de Matematica Aplicada II, Universitat Politécnica de Catalunya, Jordi Girona 1, 08034 Barcelona, Spain,
3Departament de Matematica Aplicada III, Universitat Politécnica de Catalunya, Avda del Canal Olimpic s/n, 08860 Castelldefels, Spain,
4Departament de Matematica Aplicada II, Universitat Polittenica de Catalunya, Jordi Girona 1, 08034 Barcelona, Spain,

Abstract

Let \(u,v\) be two vertices of a connected graph \(G\). The vertex \(v\) is said to be a boundary vertex of \(u\) if no neighbor of \(v\) is further away from \(u\) than \(v\). The boundary of a graph is the set of all its boundary vertices.In this work, we present a number of properties of the boundary of a graph under different points of view:(1) A realization theorem involving different types of boundary vertex sets: extreme set, periphery, contour, and the whole boundary.(2) The contour is a monophonic set.(3) The cardinality of the boundary is an upper bound for both the metric dimension and the determining number of a graph.