Constructing Families of Highly Similar but Non-Isomorphic Tournaments

Latifa Faouzi1, William Kocay2, Gérard Lopez3, Hamza Si Kaddour4
1Département de Mathématiques, Université Sidi Mohamed Ben Abdallah, Fés, Maroc
2Department of Computer Science, University of Manitoba Winnipeg, MB RST 2N2, Canada
3Institut de Mathématiques de Luminy, CNRS-UPR 9016 163 avenue de Luminy, case 907, 18288 Marseille cedez 9, France
4Institut Camille Jordan, Université Claude Bernard Lyon1 Domaine de Gerland – bét. Recherche B 50 avenue Tony-Garnier, F 69366 – Lyon cedex 07, France

Abstract

For any integer \(k\), two tournaments \(T\) and \(T’\), on the same finite set \(V\) are \(k\)-similar, whenever they have the same score vector, and for every tournament \(H\) of size \(k\) the number of subtournaments of \(T\) (resp. \(T’\)) isomorphic to \(H\) is the same. We study the \(4\)-similarity. According to the decomposability, we construct three infinite classes of pairs of non-isomorphic \(4\)-similar tournaments.