The Crossing Number of Flower Snarks and Related Graphs

Zheng Wenping1,2, Lin Xiaohui3, Yang Yuansheng3, Yang Xiwu1
1Department of Computer Science, Dalian University of Technology, Dalian, 116024, P. R. China
2School of Computer and Information Technology, Shanxi University, Taiyuan, 030006, P. R. China,
3 Department of Computer Science, Dalian University of Technology, Dalian, 116024, P. R. China

Abstract

For odd \(n \geq 5\), the Flower Snark \(F_n = (V, E)\) is a simple undirected cubic graph with \(4n\) vertices, where \(V = \{a_i : 0 \leq i \leq n-1\} \cup \{b_i : 0 \leq i \leq n-1\} \cup \{c_i : 0 \leq i \leq 2n-1\}\) and \(E = \{b_ib_{(i+1)\mod(n)}: 0 \leq i \leq n-1\} \cup \{c_ic_{(i+1)\mod(2n)} : 0 \leq i \leq 2n-1\} \cup \{a_ib_i,a_ic_i,a_ic_{n+i} : 0 \leq i \leq n-1\}\). For \(n = 3\) or even \(n \geq 4\), \(F_n\) is called the related graph of Flower Snark. We show that the crossing number of \(F_n\) equals \(n – 2\) if \(3 \leq n \leq 5\), and \(n\) if \(n \geq 6\).