The Vertex Linear Arboricity of Claw-Free Graphs with Small Degree

Jian-Liang Wu 1, Yu-Liang Wu2
1School of Mathematics, Shandong University, Jinan, 250100, China
2Department of Computer Science and Engineering The Chinese University of Hong Kong, Hong Kong

Abstract

The vertex linear arboricity \(vla(G)\) of a graph \(G\) is the minimum number of subsets into which the vertex set \(V(G)\) can be partitioned so that each subset induces a subgraph whose connected components are paths. It is proved here that \(\lceil \frac{\omega(G)}{2}\rceil \leq vla(G) \leq \lceil \frac{\omega(G)+1}{2}\rceil\) for a claw-free connected graph \(G\) having \(\Delta(G) \leq 6\), where \(\omega(G)\) is the clique number of \(G\).