In this study, we define and investigate the Gaussian Jacobsthal and Gaussian Jacobsthal Lucas numbers. We derive generating functions, Binet formulas, explicit formulas, and matrix representations for these numbers. Additionally, we present explicit combinatorial and determinantal expressions, examine negatively subscripted numbers, and establish various identities. Our results parallel those for the Jacobsthal and Jacobsthal Lucas numbers, yielding interesting consequences for the Gaussian Jacobsthal and Gaussian Jacobsthal Lucas numbers.
1970-2025 CP (Manitoba, Canada) unless otherwise stated.