Let \(G\) be a finite group of order \(n\) and \(S\) (possibly containing the identity element) be a subset of \(G\). The Bi-Cayley graph
\(\text{BC}(G, S)\) of \(G\) is a bipartite graph with vertex set \(G \times \{0, 1\}\) and edge set \(\{(g, 0), (gs, 1) \mid g \in G, s \in S\}\). Let \(p\) (\(0 < p < 1\)) be a fixed number.We define \({B} = \{\text{BC}(G, S) \mid S \subseteq G\}\)
as a sample space and assign a probability measure by requiring \(P_r(X) = p^k q^{n-k}\) for \(X = \text{BC}(G, S)\) with \(|S| = k\),
where \(q = 1-p\). It is shown that the probability of the set of Bi-Cayley graphs of \(G\) with diameter \(3\) approaches \(1\) as the order \(n\) of \(G\) approaches infinity.
1970-2025 CP (Manitoba, Canada) unless otherwise stated.