Asymptotic Upper Bounds for \(K_{1,m,k}\): Complete Graph Ramsey Numbers

Hongxue Song1,2
1College of Science, Nanjing University of Posts and Telecommunications, Nanjing 210046, P. R. China
2College of Science, Hohai University, Nanjing 210098, P. R. China

Abstract

It is shown that \(r(K_{1,m,k}, K_n) \leq (k – 1 + o(1)) (\frac{n}{log n})^{m+1}\) for any two fixed integers \(k \geq m \geq 2\) and \(n \to \infty\).
This result is obtained using the analytic method and the function \(f_{m}(x) = \int_0^1 \frac{(1-t)^{\frac{1}{m}}dt}{m+(x-m)^t} , \quad x \geq 0,m \geq 1,\)
building upon the upper bounds for \(r(K_{m,k}, K_n)\) established by Y. Li and W. Zang.Furthermore, \((c – o(1)) (\frac{n}{log n})^{\frac{7}{3}}\leq r(W_{4}, K_n) \leq (1 + o(1)) (\frac{n}{log n})^{3}\) (as \(n \to \infty\)). Moreover, we derive
\(r(K_{1} + K_{m,k}, K_n) \leq (k – 1 + o(1)) (\frac{n}{log n})^{l+m}\) for any two fixed integers \(k \geq m \geq 2\) (as \(n \to \infty\)).