On Square-Free Edge Colorings of Graphs

J. Barat1, P.P. Varju2
1Technical University of Denmark, Department of Mathematics, B.303. 2800 Lyngby, Denmark
2Analysis and Stochastics Research Group of the Hungarian Academy of Sciences, Bolyai institute, University of Szeged, Aradi vértanuk tere 1. Szeged, 6720 Hungary

Abstract

An edge coloring of a graph is called \({square-free}\) if the sequence of colors on certain walks is not a square, that is not of the form \(x_1, \ldots, x_m, x_{1}, \ldots, x_m\) for any \(m \in \mathbb{N}\). Recently, various classes of walks have been suggested to be considered in the above definition. We construct graphs, for which the minimum number of colors needed for a square-free coloring is different if the considered set of walks vary, solving a problem posed by Brešar and Klavžar. We also prove the following: if an edge coloring of \(G\) is not square-free (even in the most general sense), then the length of the shortest square walk is at most \(8|E(G)|^2\). Hence, the necessary number of colors for a square-free coloring is algorithmically computable.