The Planar Ramsey Numbers \(PR(K_4 – e, K_k – e)\)

Sun Yongqi1, Yang Yuansheng2, Wang Zhihai1
1School of Computer and Information Technology, Beijing Jiaotong University Beijing, 100044, P. R. China
2Department of Computer Science, Dalian University of Technology Dalian, 116024, P. R. China

Abstract

The planar Ramsey number \(PR(H_1, H_2)\) is the smallest integer \(n\) such that any planar graph on \(n\) vertices contains a copy of \(H_1\) or its complement contains a copy of \(H_2\). It is known that the Ramsey number \(R(K_4 – e, K_k – e)\) for \(k \leq 6\). In this paper, we prove that \(PR(K_4 – e, K_6 – e) = 16\) and show the lower bounds on \(PR(K_4 – e, K_k – e)\).