On Some Variants of Gracefulness of Cycle Graphs

A. Elsonbaty1,2, K. Mohamed1,3
1Department of Mathematics, Faculty of Science, Taibah University, Al-Madinah 41411, Saudi Arabia.
2Department of Mathematics, Faculty of Science, Ain Shams University, Cairo 11566, Egypt.
3Department of Mathematics, Faculty of Science, New Valley, Assiut University 71515, Egypt.

Abstract

A graph \(G = (V(G), E(G))\) is even graceful and equivalently graceful, if there exists an injection \(f\) from the set of vertices \(V(G)\) to \(\{0, 1, 2, 3, 4, \ldots, 2|E(G)|\}\) such that when each edge \(uv\) is assigned the label \(|f(u) – f(v)|\), the resulting edge labels are \(2, 4, 6, \ldots, 2|E(G)|\). In this work, we use even graceful labeling to give a new proof for necessary and sufficient conditions for the gracefulness of the cycle graph. We extend this technique to odd graceful and super Fibonacci graceful labelings of cycle graphs via some number theoretic concept, called a balanced set of natural numbers.