Harmonic Index of Graphs with More Than One Cut-Vertex

Amalorpava Jerline J1, Benedict Michaelraj L2, Dhanalakshmi K1, Syamala P2
1Department of Mathematics, Holy Cross College, Trichy 620 002, India
2Department of Mathematics, St. Joseph’s College, Trichy 620 002, India

Abstract

The harmonic index \(H(G)\) of a graph \(G\) is defined as the sum of the weights of all edges \(uv\) of \(G\), where the weight of \(uv\) is \(\frac{2}{d(u) + d(v)}\), with \(d(u)\) denoting the degree of the vertex \(u\) in \(G\). In this work, we compute the harmonic index of a graph with a cut-vertex and with more than one cut-vertex. As an application, this topological index is computed for Bethe trees and dendrimer trees. Also, the harmonic indices of Fasciagraph and a special type of trees, namely, polytree, are computed.