Some \(q\)-Dixon-Like Summation Formulas

Victor J. W. Guo1, Ya-Zhen Wang2
1School of Mathematical Sciences, Huaiyin Normal University, Huai’an, Jiangsu 223300, People’s Republic of China
2Department of Mathematics, East China Normal University, Shanghai 200241, People’s Republic of China

Abstract

We give a \(q\)-analogue of some Dixon-like summation formulas obtained by Gould and Quaintance [Fibonacci Quart. 48 (2010), 56-61] and Chu [Integral Transforms Spec. Funct. 23 (2012), 251-261], respectively. For example, we prove that
\(\sum\limits_{k=0}^{2m} (-1)^{m-k} q^{\binom{m-k}{2}} \binom{2m} {k} \binom{x+k} {2m+r}\binom{x+2m-k} {2m+r}\) = \(\frac{q^{m(x-m-r)}\binom{2m}{m}}{\binom{2m+r}{m}}\binom{x}{m+r}\binom{x+m}{m+r}\) where \(\binom{x}{k}\) denotes the \(q\)-binomial coefficient.