Some Properties of \(k\)-Order Gaussian Fibonacci and Lucas Numbers

Esref Gurel1, Mustafa Asci2
1Pamukkale University Science and Arts Faculty Department of Mathematics Kinikli Denizlt Turkey
2Pamukkale University Science and Arts Faculty Department of Mathematics Kinikul Denizl1 Turkey

Abstract

In this paper, we define and study the \(k\)-order Gaussian Fibonacci and Lucas numbers with boundary conditions. We identify and prove the generating functions, the Binet formulas, the summation formulas, matrix representation of \(k\)-order Gaussian Fibonacci numbers, and some significant relationships between \(k\)-order Gaussian Fibonacci and \(k\)-order Lucas numbers, connecting them with usual \(k\)-order Fibonacci numbers.