We classify the minimal blocking sets of size 15 in \(\mathrm{PG}(2,9)\). We show that the only examples are the projective triangle and the sporadic example arising from the secants to the unique complete 6-arc in \(\mathrm{PG}(2,9)\). This classification was used to solve the open problem of the existence of maximal partial spreads of size 76 in \(\mathrm{PG}(3,9)\). No such maximal partial spreads exist \([13]\). In \([14]\), also the non-existence of maximal partial spreads of size 75 in \(\mathrm{PG}(3,9)\) has been proven. So, the result presented here contributes to the proof that the largest maximal partial spreads in \(\mathrm{PG}(3,q=9)\) have size \(q^2-q+2=74\).
1970-2025 CP (Manitoba, Canada) unless otherwise stated.