Generalized Characteristic Polynomial of Generalized \(R\)-Vertex Corona

Pengli Lu1, Yang Yang1
1School of Computer and Communication Lanzhou University of Technology Lanzhou, 730050, Gansu, P.R. China

Abstract

Let \(G\) be a graph of order \(n\) with adjacency matrix \(A(G)\) and diagonal degree matrix \(D(G)\). The generalized characteristic polynomial of \(G\) is defined to be \(f_G(x,t) = \det (xI_n – (A(G) – tD(G)))\). The \(R\)-graph of \(G\), denoted by \(R(G)\), is obtained by adding a new vertex for each edge of \(G\) and joining each new vertex to both end vertices of the corresponding edge. The generalized \(R\)-vertex corona, denoted by \(R(G) \boxdot \wedge _i^n H\), is the graph obtained from \(R(G)\) and \(H\) by joining the \(i\)-th vertex of \(V(G)\) to every vertex of \(H\). In this paper, we determine the generalized characteristic polynomial of \(R(G) \boxdot \wedge _i^n H\). As applications, we get infinitely many pairs of generalized cospectral graphs, the number of spanning trees and Kirchhoff index of \(R(G) \boxdot\wedge _i^n H\).