A Note on Non-Existence of Cubic Semisymmetric Graphs of Order \(8p\) or \(8p^2\)

Yantao Li1, Huiwen Cheng2, Qinghua Ma3
1College of Applied Arts and Science, Beijing Union University, Beijin 100091, P.R. China
2 Department of Mathematics, Beijing Haidian Adults University, Beijin 100083, P.R. China
3 College of Applied Arts and Science, Beijing Union University, Beigin 100081, P.R. China

Abstract

The aim of this note is to present a short proof of a result of Alaeiyan et al. [Bull. Austral. Math. Soc.\( 77 (2008) 315-323;\)
Proc. Indian Acad. Sci., Math. Sci. \(119 (2009) 647-653\)] concerning the non-existence of cubic semisymmetric graphs of order \(8p\) or \(8p^2\), where \(p\) is a prime. In those two papers, the authors choose the heavy weaponry of covering techniques. Our proof relies on the analysis of the subgroup structure of the full automorphism group of the graph and the normal quotient graph theory.