A reflection of a regular map on a Riemann surface fixes some simple closed curves, which are called \({mirrors}\). Each mirror passes through some of the geometric points (vertices, face-centers and edge-centers) of the map such that these points form a periodic sequence which we call the \({pattern}\) of the mirror. For every mirror there exist two particular conformal automorphisms of the map that fix the mirror setwise and rotate it in opposite directions. We call these automorphisms the \({rotary\; automorphisms}\) of the mirror. In this paper, we first introduce the notion of pattern and then describe the patterns of mirrors on surfaces. We also determine the rotary automorphisms of mirrors. Finally, we give some necessary conditions under which all reflections of a regular map are conjugate.
1970-2025 CP (Manitoba, Canada) unless otherwise stated.