In this paper, we consider the class of impartial combinatorial games for which the set of possible moves strictly decreases. Each game of this class can be considered as a domination game on a certain graph, called the move-graph. We analyze this equivalence for several families of combinatorial games, and introduce an interesting graph operation called iwin and match that preserves the Grundy value. We then study another game on graphs related to the dots and boxes game, and we propose a way to solve it.
1970-2025 CP (Manitoba, Canada) unless otherwise stated.