The Szeged index of a graph \(G\) is defined as \(\text{Sz}(G) = \sum_{e=uv \in E(G)} N_u(e|G) N_v(e|G)\), where \(N_u(e|G)\) is the number of vertices of \(G\) lying closer to \(u\) than to \(v\) and \(N_v(e|G)\) is the number of vertices of \(G\) lying closer to \(v\) than to \(u\). In this article, the Szeged index of some hexagonal systems applicable in nanostructures is computed.
1970-2025 CP (Manitoba, Canada) unless otherwise stated.