Gaussian Fibonacci and Gaussian Lucas \(p\)-Numbers

Mustafa Asci1, Esref Gurel2
1PAMUKKALE UNIVERSITY SCIENCE AND ARTS FACULTY DEPARTMENT OF MATHEMATICS KINIKLI DENIZLI TURKEY
2PAMUKKALE UNIVERSITY SCIENCE AND ARTS FACULTY DEPARTMENT OF MATHEMATICS Kinki! DENIZLI TURKEY

Abstract

In this paper, we define and study the Gaussian Fibonacci and Gaussian Lucas \(p\)-numbers. We give generating functions, Binet formulas, explicit formulas, matrix representations, and sums of Gaussian Fibonacci \(p\)-numbers by matrix methods. For \(p = 1\), these Gaussian Fibonacci and Gaussian Lucas \(p\)-numbers reduce to the Gaussian Fibonacci and the Gaussian Lucas numbers.