Bases of Primitive Non-Powerful Signed Symmetric Digraphs with Loops

Yubin Gao1, Yihua Huang2, Yanling Shao1
1Department of Mathematics, North University of China Taiyuan, Shanxi 030051, P.R. China
2Department of Electronics Engineering, Sun Yat-sen University Guangzhou 510275, P.R. China

Abstract

Let \(S\) be a primitive non-powerful signed digraph. The base \(l(S)\) of \(S\) is the smallest positive integer \(l\) such that for all ordered pairs of vertices \(i\) and \(j\) (not necessarily distinct), there exists a pair of \(SSSD\) walks of length \(t\) from \(i\) to \(j\) for each integer \(t \geq l\). In this work, we use \(PNSSD\) to denote the class of all primitive non-powerful signed symmetric digraphs of order \(n\) with at least one loop. Let \(l(n)\) be the largest value of \(l(S)\) for \(S \in\) \(PNSSD\), and \(L(n) = \{l(S) | S \in PNSSD\}\). For \(n \geq 3\), we show \(L(n) = \{2, 3, \ldots, 2n\}\). Further, we characterize all primitive non-powerful signed symmetric digraphs of order \(n\) with at least one loop whose bases attain \(l(n)\).