Anthony J. Macula constructed a \(d\)-disjunct matrix \(\delta(n,d,k)\) in \([1]\), and we now know it is determined by one type of pooling space. In this paper, we give some properties of \(\delta(n,d,k)\) and its complement \(\delta^c(n,d,k)\).
1970-2025 CP (Manitoba, Canada) unless otherwise stated.