Let \(G\) be a graph, and let \(k \geq 2\) be an integer. A graph \(G\) is fractional independent-set-deletable \(k\)-factor-critical (in short, fractional ID-\(k\)-factor-critical) if \(G – I\) has a fractional \(k\)-factor for every independent set \(I\) of \(G\). In this paper, a Fan-type condition for fractional ID-\(k\)-factor-critical graphs is given.
1970-2025 CP (Manitoba, Canada) unless otherwise stated.