Spanning \(3\)-Ended Trees in \(k\)-Connected Claw-Free Graphs

Xiaodong Chen1, MingChu Li2, Meijin Xu1
1College of Science, Liaoning University of Technology, Jinzhou 121001, P.R. China
2School of Software Technology, Dalian University of Technology, Dalian, 116024, P.R. China

Abstract

Let \(\sigma_k(G)\) denote the minimum degree sum of \(k\) independent vertices of a graph \(G\). A spanning tree with at most \(3\) leaves is called a spanning \(3\)-ended tree. In this paper, we prove that for any \(k\)-connected claw-free graph \(G\) with \(|G| = n\), if \(\sigma_{k+3}(G) \geq n – k\), then \(G\) contains a spanning \(3\)-ended tree.