A vertex \(v \in V(G)\) is said to be a self vertex switching of \(G\) if \(G\) is isomorphic to \(G^v\), where \(G^v\) is the graph obtained from \(G\) by deleting all edges of \(G\) incident to \(v\) and adding all edges incident to \(v\) which are not in \(G\). In [6], the author characterized connected unicyclic graphs each with a self vertex switching. In this paper, we characterize disconnected unicyclic graphs each with a self vertex switching.
1970-2025 CP (Manitoba, Canada) unless otherwise stated.