New Inequalities on the Hyperbolicity Constant of Line Graphs

Walter Carballosa1, José M.Rodriguez1, José M.Sigarreta2
1Departamento de Matemisticas Universidad Carlos ITI de Madrid, Av. de la Universidad 30, 28911 Leganés, Madrid, Spain
2Facultad de Matematicas Universidad Auténoma de Guerrero, Carlos E. Adame 5, Col. La Garita, Acapulco, Guerrero, México.

Abstract

If \(X\) is a geodesic metric space and \(x_1, x_2, x_3 \in X\), a geodesic triangle \(T = \{x_1, x_2, x_3\}\) is the union of the three geodesics \([x_1x_2]\), \([x_2x_3]\) and \([x_3x_1]\) in \(X\). The space \(X\) is \(\delta\)-hyperbolic (in the Gromov sense) if any side of \(T\) is contained in a \(5\delta\)-neighborhood of the union of the two other sides, for every geodesic triangle \(T\) in \(X\). We denote by \(\delta(X)\) the sharp hyperbolicity constant of \(X\), i.e., \(\delta(X) := \inf\{\delta \geq 0: X \text{ is } \delta\text{-hyperbolic}\}\). The main result of this paper is the inequality \(\delta(G) \leq \delta(\mathcal{L}(G))\) for the line graph \(\mathcal{L}(G)\) of every graph \(G\). We prove also the upper bound \(\delta(L(G)) \leq 5\delta(G) + 3l_{\max}\), where \(\max\) is the supremum of the lengths of the edges of \(G\). Furthermore, if every edge of \(G\) has length \(k\), we obtain \(\delta(G) \leq \delta(\mathcal{L}(G)) \leq 5\delta(G) + 5k/2\).