Toughness and Existence of Fractional \((g, f)\)-factors in Graphs

Shuli Liu1, Jiansheng Cai1
1School of Mathematics and Information Sciences, Weifang University, Weifang 261061, P. R. China

Abstract

Let \(G\) be a graph with vertex set \(V(G)\). For any \(S \subseteq V(G)\), we use \(w(G – S)\) to denote the number of components of \(G – S\). The toughness of \(G\), \(t(G)\), is defined as \(t(G) = \min\left\{\frac{|S|}{w(G – S)} \mid S \subseteq V(G), w(G – S) > 1\right\}\) if \(G\) is not complete; otherwise, set \(t(G) = +\infty\). In this paper, we consider the relationship between the toughness and the existence of fractional \((g, f)\)-factors. It is proved that a graph \(G\) has a fractional \((g, f)\)-factor if \(t(G) \geq \frac{b^2 – 1}{a}\).