Uniformly Pair-Bonded Trees

Wai Chee Shiu1, Xue-gang Chen2, Wai Hong Chan1
1Department of Mathematics, Hong Kong Baptist University, Kowloon Tong, Hong Kong, P.R. China.
2Department of Mathematics, North China Electric Power University, Beijing 102206, P.R. China.

Abstract

Let \(G = (V(G), E(G))\) be a graph with \(\delta(G) \geq 1\). A set \(D \subseteq V(G)\) is a paired-dominating set if \(D\) is a dominating set and the induced subgraph \(G[D]\) contains a perfect matching. The paired domination number of \(G\), denoted by \(\gamma_p(G)\), is the minimum cardinality of a paired-dominating set of \(G\). The paired bondage number, denoted by \(b_p(G)\), is the minimum cardinality among all sets of edges \(E’ \subseteq E\) such that \(\delta(G – E’) \geq 1\) and \(\gamma_p(G – E’) > \gamma_p(G)\). For any \(b_p(G)\) edges \(E’ \subseteq E\) with \(\delta(G – E’) \geq 1\), if \(\gamma_p(G – E’) > \gamma_p(G)\), then \(G\) is called uniformly pair-bonded graph. In this paper, we prove that there exists uniformly pair-bonded tree \(T\) with \(b_p(T) = k\) for any positive integer \(k\). Furthermore, we give a constructive characterization of uniformly pair-bonded trees.