Divisor Orientations of Powers of Paths and Powers of Cycles

Salah Al-Addasi1, Omar A. AbuGhneim2, Hasan Al-Ezeh2
1Department of Mathematics, Faculty of Science, Hashemite University, Zarqa 13115, Jordan
2Department of Mathematics, Faculty of Science, Jordan University, Amman 11942, Jordan

Abstract

In this paper, we prove that for any positive integers \(k,n\) with \(k \geq 2\) , the graph \(P_k^n\) is a divisor graph if and only if \(n \leq 2k + 2\) , where \(P^k_n\) is the \(k\) th power of the path \(P_n\). For powers of cycles we show that \(C^k_n\) is a divisor graph when \(n \leq 2k + 2\), but is not a divisor graph when \(n \geq 2k + 2\),but is not a divisor graph when \(n\geq 2k+\lfloor \frac{k}{2}\rceil,\) where \(C^k_n\) is the \(k\)th power of the cycle \(C_n\). Moreover, for odd \(n\) with \(2k+2 < n < 2k + \lfloor\frac{k}{2}\rfloor + 3\), we show that the graph \(C^k_n\) is not a divisor graph.