It is shown that every well-defined solution to the second-order difference equation in the title, when \((A_n)_{n \in 0}\) is a two-periodic sequence such that \(\max\{A_0, A_1\} \geq 0\), is eventually periodic with period two. In the case \(\max\{A_0, A_1\} \leq 0\), it is shown the existence of unbounded solutions, by describing all solutions in terms of \(A_0\), \(A_1\), \(x_{-1}\), and \(x_0\).
1970-2025 CP (Manitoba, Canada) unless otherwise stated.