The Induced Matching Extendability of \(C_{2n}(1,k)\)

Xu Huafeng1,2, Bo Xianhui3
1College of Economics and Management, Nanjing University of Aeronautics and Astronautics, Nanjing, Jiangshu 210016, P. R. China
2Henan University of Urban Construction, Pingdingshan, Henan 467001, P. R. China
3School of Accountancy, Central University of Finance and Economics, Beijing 100081, P. R. China

Abstract

A simple graph \(G\)is induced matching extendable, shortly IM-extendable, if every induced matching of \(G\) is included in a perfect matching of \(G\). The cyclic graph \(C_{2n}(1,k)\) is the graph with \(2n\) vertices \(x_0, x_1, \ldots, x_{2n-1}\), such that \(x_ix_j\) is an edge of \(C_{2n}(1,k)\) if either \(i-j \equiv \pm 1 \pmod{2n}\) or \(i-j \equiv \pm k \pmod{2n}\). We show in this paper that the only IM-extendable graphs in \(C_{2n}(1,k)\) are \(C_{2n}(1,3)\) for \(n \geq 4\); \(C_{2n}(1,n-1)\) for \(n \geq 3\); \(C_{2n}(1,n)\) for \(n \geq 2\); \(C_{2n}(1,\frac{n}{2})\) for \(n \geq 4\); \(C_{2n}(1,\frac{2n+1}{3})\) for \(n \geq 5\); \(C_{2n}(1,\frac{2n+2}{3})\) for \(n \leq 14\); \(C_{2n}(1,\frac{2n-2}{3})\) for \(n \leq 16\); \(C_{2n}(1,2)\) for \(n \leq 4\); \(C_{20}(1,8)\); \(C_{30}(1,6)\); \(C_{40}(1,8)\); \(C_{60}(1,12)\) and \(C_{80}(1,10)\).