On the Existence of Well-Ordered Steiner Triple Systems

Alan C.H.Ling1
1Department of Computer Science University of Vermont Burlington, Vermont USA 05405

Abstract

In \([1]\), well-ordered Steiner triple systems were introduced and used to construct \(1\)-perfect partitions of the \(n\)-cube. However, non-trivial well-ordered Steiner triple systems were only known to exist when \(v =15\). In this short note, we present a simple construction to give a non-trivial well-ordered Steiner triple system of order \(v = 2^n – 1\) for all \(n \geq 5\) and this settles a problem in \([1]\).