Let \(G\) be a connected graph. A weakly connected dominating set of \(G\) is a dominating set \(D\) such that the edges not incident to any vertex in \(D\) do not separate the graph \(G\). In this paper, we first consider the relationship between weakly connected domination number \(\gamma_w(G)\) and the irredundance number \(ir(G)\). We prove that \(\gamma_w(G) \leq \frac{5}{2}ir(G) – 2\) and this bound is sharp. Furthermore, for a tree \(T\), we give a sufficient and necessary condition for \(\gamma_c(T) = \gamma_w(T) + k\), where \(\gamma_c(T)\) is the connected domination number and \(0 \leq k \leq \gamma_w(T) – 1\).
1970-2025 CP (Manitoba, Canada) unless otherwise stated.