Extremal Zagreb Indices of Unicyclic Graphs

Shubo Chen1,2, Houqing Zhou3
1Department of Mathematics and Computer Science, Hunan City University, Yiyang, Hunan 413000, P. R.China
2College of Mathematics, Central South University, Changsha 410075, P. R. China
3Department of Mathematics, Shaoyang University, Shaoyang, Hunan, 422000, P. R. China

Abstract

The Zagreb indices are topological indices of graphs, which are defined as:\(M_1(G) = \sum\limits_{v \in V(G)} (d(v))^2\), \(M_2(G) = \sum\limits_{uv \in E(G)} d(u)d(v)\) .In this paper, we determine the upper and lower bounds for the Zagreb indices of unicyclic graphs in terms of their order and girth. In each case, we characterize the extremal graphs.