Hyperbolicity and Parameters of Graphs

Junior Michel1, José M.Rodriguez1, José M.Sigarreta2, Maria Villeta3
1Departamento de Mateméticas Universidad Carlos III de Madrid, Av. de la Universidad 30, 28911 Leganés, Madrid, Spain
2Facultad de Mateméticas Universidad Auténoma de Guerrero, Carlos E. Adame 5, Col. La Garita, Acapulco, Guerrero, México.
3Departamento de Estadistica e Investigacién Operativa III Universidad Complutense de Madrid, Av.Puerta de Hierro s/n., 28040 Madrid, Spain

Abstract

If \(X\) is a geodesic metric space and \(x_1, x_2, x_3 \in X\), a geodesic triangle \(T = \{x_1, x_2, x_3\}\) is the union of the three geodesics \([x_1 x_2], [x_2 x_3]\) and \([x_3 x_1]\) in \(X\). The space \(X\) is \(\delta\)-hyperbolic (in the Gromov sense) if any side of \(T\) is contained in a \(\delta\)-neighborhood of the union of the two other sides, for every geodesic triangle \(T\) in \(X\). We denote by \(\delta(X)\) the sharp hyperbolicity constant of \(X\), i.e. \(\delta(X) := \inf\{\delta \geq 0: X \text{ is } \delta\text{-hyperbolic}\}\). In this paper, we find some relations between the hyperbolicity constant of a graph and its order, girth, cycles, and edges. In particular, if \(g\) denotes the girth, we prove \(\delta(G) \geq g(G)/4\) for every (finite or infinite) graph; if \(G\) is a graph of order \(n\) and edges with length \(k\) (possibly with loops and multiple edges), then \(\delta(G) \leq nk/4\). We find a large family of graphs for which the first (non-strict) inequality is in fact an equality; besides, we characterize the set of graphs with \(\delta(G) = nk/4\). Furthermore, we characterize the graphs with edges of length \(k\) with \(\delta(G) < k\).