Acyclic Total Colorings of Planar Graphs

Xiang Yong Sun1, Jian Liang Wu2
1School of Statistics and Mathematics, Shandong Economic University, Jinan, 250014, China
2School of Mathematics and Systems Science, Shandong University, Jinan, 250100, China

Abstract

In this paper, we give the definition of acyclic total coloring and acyclic total chromatic number of a graph. It is proved that the acyclic total chromatic number of a planar graph \(G\) with maximum degree \(\Delta(G)\) and girth \(g\) is at most \(\Delta(G)+2\) if \(\Delta \geq 12\), or \(\Delta \geq 6\) and \(g \geq 4\), or \(\Delta = 5\) and \(g \geq 5\), or \(g \geq 6\). Moreover, if \(G\) is a series-parallel graph with \(\Delta \geq 3\) or a planar graph with \(\Delta \geq 3\) and \(g \geq 12\), then the acyclic total chromatic number of \(G\) is \(\Delta(G) + 1\).