Let \(G\) be a connected graph. The degree resistance distance of \(G\) is defined as \(D_R(G) = \sum\limits_{\{u,v\} \in V(G)} (d(u) + d(v))r(u,v)\), where \(d(u)\) (and \(d(v)\)) is the degree of the vertex \(u\) (and \(v\)), and \(r(u,v)\) is the resistance distance between vertices \(u\) and \(v\). A fully loaded unicyclic graph is a unicyclic graph with the property that there is no vertex with degree less than \(3\) in its unique cycle. In this paper, we determine the minimum and maximum degree resistance distance among all fully loaded unicyclic graphs with \(n\) vertices, and characterize the extremal graphs.
1970-2025 CP (Manitoba, Canada) unless otherwise stated.