On Cayley Graphs of Symmetric Inverse Semigroups

Yifei Hao1,2, Xing Gao1, Yanfeng Luo1
1School of Mathematics and Statistics, Lanzhou University, Lanzhou 730000, PR China
2School of International Business, Sichuan International Studies University, Chongging 400031, PR China

Abstract

Let \(\mathcal{I}_X\) be the symmetric inverse semigroup on a finite nonempty set \(X\), and let \(A\) be a subset of \(\mathcal{I}^*_X = \mathcal{I}_X \setminus \{0\}\). Let \(\text{Cay}(\mathcal{I}^*_X, A)\) be the graph obtained by deleting vertex \(0\) from the Cayley graph \(\text{Cay}(\mathcal{I}_X, A)\). We obtain conditions on \(\text{Cay}(\mathcal{I}^*_X, A)\) for it to be \(\text{ColAut}_A(\mathcal{I}^*_X)\)-vertex-transitive and \(\text{Aut}_A(\mathcal{I}^*_X)\)-vertex-transitive. The basic structure of vertex-transitive \(\text{Cay}(\mathcal{I}^*_X, A)\) is characterized. We also investigate the undirected Cayley graphs of symmetric inverse semigroups, and prove that the generalized Petersen graph can be constructed as a connected component of a Cayley graph of a symmetric inverse semigroup, by choosing an appropriate connecting set.