The Merrifield-Simmons index \(\sigma(G)\) of a (molecular) graph \(G\) is defined as the number of independent-vertex sets of \(G\). By \(G(n, l, k)\) we denote the set of unicyclic graphs with girth \(l\) and the number of pendent vertices being \(k\) respectively. Let \(S_n^l\) be the graph obtained by identifying the center of the star \(S_{n-l+1}\) with any vertex of \(C_l\). By \(S^{l,k}_n*\) we denote the graph obtained by identifying one pendent vertex of the path \(P_{n-l-k+1}\) with one pendent vertex of \(S_{l+k}^l\). In this paper, we first investigate the Merrifield-Simmons index for all unicyclic graphs in \(G(n,l,k)\) and \(S^{l,k}_n*\) is shown to be the unique unicyclic graph with maximum Merrifield-Simmons index among all unicyclic graphs in \(G(n, l, k)\) for fixed \(l\) and \(k\). Moreover, we proved that:
1970-2025 CP (Manitoba, Canada) unless otherwise stated.