A cyclic coloring is a vertex coloring such that vertices incident with the same face receive different colors. Let \(G\) be a plane graph, and let \(\Delta^*\) be the maximum face degree of \(G\). In 1984, Borodin conjectured that every plane graph admits a cyclic coloring with at most \(\left\lfloor \frac{3\Delta^*}{2} \right\rfloor\) colors. In this note, we improve a result of Borodin et al. [On cyclic colorings and their generalizations, Discrete Mathematics 203 (1999), 23-40] by showing that every plane graph with \(\Delta^* = 6\) can be cyclically colored with 9 colors. This confirms the Cyclic Coloring Conjecture in the case \(\Delta^* = 6\).
1970-2025 CP (Manitoba, Canada) unless otherwise stated.