On a Characterization for a Graphic Sequence to be Potentially \(K_{r+1} – E(G)\)-graphic

Meng-Xiao Yin1, Ye Wang2, Jian-Hua Yin2, Cheng Zhong1
1School of Computer, Electronics and Information, Guangxi University, Nanning 530004, China.
2Department of Mathematics, College of Information Science and Technology, Hainan University, Haikou 570228, China.

Abstract

Let \(G\) be a subgraph of the complete graph \(K_{r+1}\) on \(r+1\) vertices, and let \(K_{r+1} – E(G)\) be the graph obtained from \(K_{r+1}\) by deleting all edges of \(G\). A non-increasing sequence \(\pi = (d_1, d_2, \ldots, d_n)\) of nonnegative integers is said to be potentially \(K_{r+1} – E(G)\)-graphic if it is realizable by a graph on \(n\) vertices containing \(K_{r+1} – E(G)\) as a subgraph. In this paper, we give characterizations for \(\pi = (d_1, d_2, \ldots, d_n)\) to be potentially \(K_{r+1} – E(G)\)-graphic for \(G = 3K_2, K_3, P_3, K_{1,3}\), and \(K_2 \cup P_2\), which are analogous to Erdős-Gallai’s characterization using a system of inequalities. These characterizations partially answer one problem due to Lai and Hu [10].