A transverse Steiner quadruple system \((TSQS)\) is a triple \((X, \mathcal{H}, \mathcal{B})\) where \(X\) is a \(v\)-element set of points, \(\mathcal{H} = \{H_1, H_2, \ldots, H_r\}\) is a partition of \(X\) into holes, and \(\mathcal{B}\) is a collection of transverse \(4\)-element subsets with respect to \(\mathcal{H}\), called blocks, such that every transverse \(3\)-element subset is in exactly one block. In this article, we study transverse Steiner quadruple systems with \(r\) holes of size \(g\) and \(1\) hole of size \(u\). Constructions based on the use of \(s\)-fans are given, including a construction for quadrupling the number of holes of size \(g\). New results on systems with \(6\) and \(11\) holes are obtained, and constructions for \(\text{TSQS}(x^n(2n)^1)\) and \(\text{TSQS}(4^n2^1)\) are provided.
1970-2025 CP (Manitoba, Canada) unless otherwise stated.