On Friendly Index Sets of Cycles with Parallel Chords

Sin-Min Lee1, Ho Kuen Ng2
1Department of Computer Science San Jose State University San Jose, CA 95192, USA
2Department of Mathematics San Jose State University San Jose, CA 95192, USA

Abstract

Let \(G\) be a graph with vertex set \(V(G)\) and edge set \(E(G)\), and let \(A\) be an abelian group. A labeling \(f : V(G) \to A\) induces an edge labeling \(f^* : E(G) \to A\) defined by \(f^*(xy) = f(x) + f(y)\), for each edge \(xy \in E(G)\). For \(i \in A\), let \(v_f(i) = \mathrm{card}\{v \in V(G) : f(v) = i\}\) and \(e_f(i) = \mathrm{card}\{e \in E(G) : f^*(e) = i\}\). Let \(c(f) = \{|e_f(i) – e_f(j)|: (i, j) \in A \times A\}\). A labeling \(f\) of a graph \(G\) is said to be \(A\)-friendly if \(|v_f(i)- v_f(j)| \leq 1\) for all \((i, j) \in A \times A\). If \(c(f)\) is a \((0, 1)\)-matrix for an \(A\)-friendly labeling \(f\), then \(f\) is said to be \(A\)-cordial. When \(A = \mathbb{Z}_2\), the friendly index set of the graph \(G\), \(FI(G)\), is defined as \(\{|e_f(0) – e_f(1)| : \text{the vertex labeling } f \text{ is } \mathbb{Z}_2\text{-friendly}\}\). In [13] the friendly index set of cycles are completely determined. In this paper we describe the friendly index sets of cycles with parallel chords. We show that for a cycle with an arbitrary non-empty set of parallel chords, the numbers in its friendly index set form an arithmetic progression with common difference 2.