We provide the specifics of how affine planes of orders three, four, and five can be used to partition the full design comprising all triples on \(9, 16\), and \(25\) elements, respectively. Key results of the approach for order five are generalized to reveal when there is potential for using suitable affine planes of order \(n\) to partition the complete sets of \(n^2\) triples into sets of mutually disjoint triples covering either all \(n^2\), or else precisely \(n^2 – 1\), elements.
1970-2025 CP (Manitoba, Canada) unless otherwise stated.